
DERI Galway
IDA Business Park

Galway, Ireland
www.deri.ie

DERI Innsbruck
Technikerstrasse 21a

Innsbruck, Austria
www.deri.at

DERI Korea
Yeonggun-Dong, Chongno-Gu

Seoul, Korea
korea.deri.org

DERI Stanford
Serra Mall

Stanford, USA
www.deri.us

DERI – DIGITAL ENTERPRISE RESEARCH INSTITUTE

A process ontology to

represent semantics of

different process and

choreography meta-models

Armin Haller and Eyal Oren

DERI Technical Report 2006-02-03

February 2006

DERI – DIGITAL ENTERPRISE RESEARCH INSTITUTE

DERI Technical Report

DERI Technical Report 2006-02-03, February 2006

A process ontology to represent semantics of

different process and choreography meta-models

Armin Haller1 Eyal Oren1

Abstract.Currently external business process descriptions (choreographies) are discon-
nected from the internal processes (workflows), leading to several problems. Directly map-
ping internal to external processes requires a quadratic amount of mappings; an intermediate
ontology reduces the amount of necessary mappings but is not trivial to construct, due to the
variety in workflow metamodels. In this paper we introduce our multi metamodel process
ontology (m3po), which is based on various existing reference models and languages from
the workflow and choreography domain. This ontology allows the extraction of arbitrary
choreography interface descriptions from arbitrary internal workflow models. We also report
on an initial validation: we translate an IBM Websphere MQ Workflow model into the m3po
ontology and then extract an Abstract BPEL model from the ontology.

1Digital Enterprise Research Institute, National University of Ireland, Galway.

Acknowledgements: This material is based upon works supported by the Science Foundation
Ireland under Grant No. 02/CE1/I131.

Copyright© 2006 by the authors

DERI TR 2006-02-03 I

Contents

1 Introduction 1

2 Motivating Example 1
2.1 Current situation . 1
2.2 Preferred situation . 2

3 Approach 3
3.1 Hypothesis . 4
3.2 Analysis . 4

4 Related Work 5

5 Ontology 6
5.1 Functional and Behavioural Aspect . 6

5.1.1 Workflow related (behavioural) . 7
5.1.2 Choreography related (behavioural) . 8

5.2 Informational Aspect . 8
5.2.1 Workflow related (informational) . 8
5.2.2 Choreography related (informational) . 9

5.3 Organisational Aspect . 10
5.3.1 Workflow related (organisational) . 10
5.3.2 Choreography related (organisational) . 11

5.4 Operational Aspect . 11
5.5 Orthogonal Aspects . 12
5.6 Summary . 12

6 Validation 13

7 Conclusion 14

DERI TR 2006-02-03 1

1 Introduction

Organisations have long used process modelling to describe the dynamic behaviour of their business.
Workflow Management Systems (WfMSs) are commonly applied for process modelling and allow to
describe and execute business processes [10]. With the advent of Service Oriented Computing [18]
organisations started to expose their business functionality explicitly as reusable and composable
services. For using these services organisations offer choreography interfaces (also called public
processes, abstract processes, or provider behaviour [9, 24]), stating conversational patterns in
which the services can be consumed.

A fundamental lack in current choreography frameworks such as the Abstract Business Process
Execution Language (BPEL) [24] and Web Service Choreography Description Language (WS-CDL)
[14], is the disconnection between external choreography interfaces and internal workflow descrip-
tions. Conceptually, a choreography interface can be regarded as an abstracted view on a business
process (c.f. [6, 7, 9, 21]), but current choreography frameworks ignore this dependency relation.

The disconnection between choreography interfaces and workflow definitions leads to two prob-
lems: choreography interfaces have to be manually synchronised with workflow descriptions, and
their consistency with regard to the internal process can not be verified automatically. A ma-
jor obstacle in connecting internal processes and external choreographies is the variety in existing
workflow languages, workflow metamodels, and choreography languages [2, 19, 23]. Directly trans-
lating from workflow languages to choreography languages would require n2 mappings, for each
combination of workflow and choreography language.

2 Motivating Example

We will now illustrate the problems that companies face when designing collaborative business
processes with an example request-for-quote (RFQ) process.

2.1 Current situation

An automotive parts vendor implements and executes his internal processes with IBM Websphere
MQ Workflow1. One of the vendor’s processes concerns the processing of requests for quotes. Figure
1 shows a simplified view of this modelled in MQ Workflow. The symbols on the left of the picture
denote a source and sink node and represent the start and end of the MQ Workflow process model.
Dashed arrows show data transferred between activities and solid arrows denote the control flow.

The process starts with an RFQ from a customer. The vendor checks whether the requested
part, say an electric generator, is available in stock and can be delivered within the time specified.
If the product is available the vendor prepares a quote, otherwise he returns a referral including
the reason for non-delivery.

The graphic in figure 1 only shows the behavioural aspect and parts of the informational aspect.
Organisational and operational properties of the model, such as the role assignment of the man-
ual activity check-product-availability, are not visible in the figure, since they are defined within
activities.

1for our analysis we have used v3.4 of the product.

2 DERI TR 2006-02-03

Figure 1: IBM MQ Workflow RFQ

2.2 Preferred situation

The vendor wants to automate the collaboration with his partners. This would minimise the manual
labour by enforcing partners to directly invoke interfaces to its internal WfMS. An example for such
an automation is the initial data input. Currently this data is manually entered into the system; the
goal of the vendor is for this input to come directly from the external business partner. To enable
automatic collaboration the vendor needs to describe the public view on his business processes. To
confirm to industry standards this public process should conform to the standardised RosettaNet
choreography interface PIP 3A12; which describes a request for quotation.

Figure 2 shows a RosettaNet collaboration and the internal process model described above in
a UML activity diagram. Public activities (the RosettaNet PIP 3A1) are displayed in black and
private activities in white. The vendor’s choreography is formed by the black activities in his
swimlane and the customer’s choreography by the black activities in his swimlane respectively.

In this example the internal workflow is straightforward and for the purpose of simplification
it is already aligned to an external standard process in terms of a RosettaNet PIP 3A1. Thus it
is not difficult to model the external part of the process in any choreography description language.
However, in reality the processes can be significantly more complex, and automatic extraction of
choreography interfaces is desired; studies show that around 50% of the RosettaNet implementation
effort focuses on combining the private process and the PIP public process, indicating a low level
of automation [8].

In order to automatically extract the choreography interface, the internal business process has to
be extended by information specific to external processes, such as message transfer, a collaboration
role model, and the direction of the communication. Subsequently the model should be extracted
to a choreography descriptions language. These features are currently not offered by MQ Workflow
or any other workflow management system.

2http://www.rosettanet.org/PIP3A1.

http://www.rosettanet.org/PIP3A1

DERI TR 2006-02-03 3

SellerBuyer
Request for
Quote (RFQ) Process RFQ

Receive
RFQ

Send
RFQ

Check Product
Availability

Send
Part
Info

Process Quote

Prepare
Referral

Receive
Part
Info

Send
Referral

Receive
Referral

Quote
Response

Send
Account

Info

Receive
Account

Info
Send
Quote

Receive
Quote

Figure 2: External Process (RosettaNet PIP)

3 Approach

Figure 3 describes our approach to connect workflows and choreography descriptions. We develop an
intermediate unifying workflow ontology that can represent arbitrary workflows, thus reducing the
amount of required mappings to 2n. This ontology can be used to represent internal process models,
and from the ontology choreography interfaces (corresponding to the internal process model) can
be extracted.

In this paper we focus on developing the ontology. We construct the ontology based on an
analysis of existing models, and we validate the representational power of this ontology by first
capturing an exemplary existing model, and extracting an exemplary choreography interface from
the ontology.

IBM MQ
workflow

YAWL
workflow ...

Abstract BPEL
interface

WS-CDL
interface ...

multi meta-model process ontology
(m3po)

choreography
models

workflow
models

Figure 3: Connecting workflow models to extract choreography interfaces

4 DERI TR 2006-02-03

3.1 Hypothesis

Our hypothesis is that constructing the ontology through a careful analysis of existing reference
models and workflow languages, guarantees the representational width of the ontology, i.e. that
all existing workflow models can be represented and all existing choreography interfaces can be
extracted from it.

To verify this hypothesis, we first analyse the most prominent existing reference models, and
analyse their features and representational power. The analysis is performed on seven evalua-
tion criteria: first we consider the support for vertical integration (the ability to relate internal
and external process models) and horizontal integration (the ability to map and relate different
WfMSs, to reduce the number of necessary mappings). Then we consider the support for the five
key workflow aspects [13], widely recognised as essential workflow characteristic: the functional3,
behavioural, informational, organisational, and operational aspects. And finally we compare the
support for choreography specific extensions, specifically the support for message definitions and
message passing, and collaboration role-models.

3.2 Analysis

We summarise the support of workflow and choreography features in existing reference models and
languages, as shown in table 1.

ve
rt

.

ho
ri

z.

be
ha

v.

in
fo

r.

or
g.

op
er

.

ch
or

.

XPDL – ± ± + ± + +
PSL – + ± ± – – –
YAWL – – + + – ± –
BPEL ± – ± + – ± +
WS-CDL – – ± + – – +

Table 1: workflow and choreography features

We include the following models in our analysis: XPDL [25]: the standard for syntactical ex-
change of workflow models; PSL [12]: a formal ontology that can represent the semantics of work-
flow models and enables semantics-preserving exchange of models; YAWL [1]: the behaviourally
most complete workflow language with direct support for all workflow patterns; BPEL [24]: the
most prominent (executable) web orchestration language; and WS-CDL [14]: the most prominent
multi-party choreography language.

Vertical integration is concerned with the integration of internal and external process models,
it includes workflow views [7], abstraction levels, and visibility of processes and activities. Abstract
BPEL describes choreographies, but cannot indicate visibility and is disconnected from executable
BPEL. XPDL has private and public processes, but they cannot be defined on the activity level,
nor can the visibility be parameterised for a participant. WS-CDL only describes choreographies
and has no notion of internal processes, whereas PSL and YAWL do not support external process
models.

3the functional aspect is not separately analysed

DERI TR 2006-02-03 5

Horizontal integration denotes the ability to deal with multiple WfMSs. PSL offers a formal
ontology that can express semantical differences between systems. XPDL offers workflow inter-
operability on a syntactical level, but cannot express semantical differences. YAWL, BPEL, and
WS-CDL do not address integration, but are stand-alone models.

In the behavioural aspect, YAWL naturally supports all control-flow patterns. BPEL supports
more advanced patterns, whereas XPDL, PSL, and WS-CDL support only the basic control-flow
constructs (although PSL allows arbitrary extensions). Constraint-based approaches [3] are only
supported by PSL.

In the informational aspect, XPDL, YAWL, BPEL, and WS-CDL support data type definitions
and data passing. PSL does not cover data passing or typing.

In the organisational aspect, XPDL supports the usage of external resource definitions (it
supports the terms, but relations cannot be included). PSL, YAWL, BPEL, and WS-CDL do not
include an organisational model.

In the operational aspect, XPDL offers various invocation methods and styles. YAWL and
BPEL use Web services for invoking operations. PSL and WS-CDL do not cover this aspect.

XPDL, BPEL, and WS-CDL support choreography specific aspects, whereas PSL and YAWL
not.

4 Related Work

Our work is most closely related to several approaches to views on process models, i.e. [6, 7, 20, 21].
Chebbi et al. [6] propose a view model with cooperative activities that can be partially visible

for different partners, but the approach requires n2 mappings and does not consider data (message
transfer).

Chiu et al. [7] present a meta-model that includes cross-organisational communications, defining
message transfer and direction. The abstracted view is however limited to sequential activities, the
approach is specific to one workflow modelling tool, and does not offer integrated choreography
extraction.

Schulz/Orlowska [21] introduce a state-transition approach that binds states of private workflow
tasks to a corresponding view-task; they identify mappings in the conceptual architecture, but do
not describe how to integrate different workflow models, and abstract the data aspect completely.

Sayal et al. [20] introduce service activities (that represent trade partner interaction) as workflow
primitives, but their approach is specific to one workflow modelling tool and addresses neither
workflow integration nor choreography interface extraction.

Several approaches address interoperability issues between workflow management systems, such
as Mobile [13], Meteor [22], and CrossFlow [11]. Unfortunately these approaches require a pre-
established partner agreement on the semantics of the process models, and they do not target
current choreography standards.

(author?) [15] describes consistency verification between executable BPEL and Abstract BPEL.
However, the approach does not extract interfaces but only verifies them, and does not tackle the
generic language mapping problem.

6 DERI TR 2006-02-03

5 Ontology

The multi metamodel process ontology (m3po) is based on two principles: to incorporate and unify
the different existing workflow metamodels and workflow reference models, and to provide the
necessary properties for extracting choreographies from internal business processes. We have com-
bined the most elaborate existing reference metamodels and extended the m3po with choreography-
specific information. The ontology focuses on integrating collaboration agreements with internal
processes; outside the scope are protocol-level agreements such as RosettaNet RNIF4, which include
validation rules, acknowledgement behaviour, security, and message transport [5, p. 368]; we do
(partially) consider transaction management and message vocabulary.

In the following sections we describe the m3po, introduced per workflow aspect. The ontology is
written in the web ontology language WSML [4], making the semantics of the process concepts for-
mal and explicit — necessary given the different semantics of workflow meta-models. For readability
reasons, we display the important concepts in UML class diagrams5; the full ontology including the
axiomatisation of its semantics can be found at http://m3pe.org/ontologies/m3po.wsml. We
illustrate each section with example snippets6 that represent our earlier introduced example.

5.1 Functional and Behavioural Aspect

The functional and behavioural aspects of the m3po are shown in figure 4.
behavioural

ActivityOccurrence

-hasName:string
-hasStatus:Status

ActivityType

-hasName:string
-hasInputCondition:expr
-hasOutputCondition:expr
-validFrom:TimePoint
-validUntil:TimePoint
-incomingTransition:Transition
-outgoingTransition:Transition
-incomingRestriction:Restriction
-outgoingRestriction:Restriction

isOccurrenceOf+

BlockActivity

-hasName:string
-isUnordered:boolean
-isTransactional:boolean
-hasStartActivity:activityType
-hasEndActivity:activityType

containsActivity+*

Connector

startActivity+

endActivity+

Event

-hasTrigger:activityType
-isTriggeredBy:activityType

Package

-hasName:string

Private

-ownedBy:Organisation

ProcessOccurrence

-hasName:string
-hasStatus:Status

ProcessType

-hasName:string
-validFrom:TimePoint
-validUntil:TimePoint

Public

-ownedBy:Participant

Abstract

-ownedBy:collaborationRole

Restriction

-restrictionExpr:expr

outgoingRestriction+

incomingRestriction+

Transition

outgoingTransition+

incomingTransition+

ParMultiInst.SqMultiInst.

containsProcess+

*

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure 4: Functional and behavioural aspects

4http://www.rosettanet.org/RNIF.
5some concepts from the ontology are omitted in the UML class diagrams
6the complete ontology instance for that example is available at http://m3pe.org/ontologies/rfq.wsml.

http://m3pe.org/ontologies/m3po.wsml
http://www.rosettanet.org/RNIF
http://m3pe.org/ontologies/rfq.wsml

DERI TR 2006-02-03 7

5.1.1 Workflow related (behavioural)

An activityType is the primary concept in the ontology; it can represent a reusable behaviour in a
process, a triggered event, a routing construct that constrains the ordering of other activityTypes
or a task with pre- and postconditions to model constraint-based workflow specification languages
[10].

A processType groups related activities, data, and resources together. The distinction between
a processType and a processOccurrence is similar to workflow types and workflow instances in [13].
At execution (runtime), a processOccurrence represents an actual task to be carried out. Each
processOccurrence is an instance of a processType. Multiple instances of a processType might exist
at the same time. Listing 1 shows a snippet including instances of the processType and activityType
from our motivating example: the overall request-for-quote process and the process request-for-quote
activity.� �
12 instance rfqpw memberOf publicProcessType
13 hasName hasValue ”RFQ Processing Workflow”
14 hasPartnerLink hasValue buyerSellerRelation
49

50 instance rfq memberOf activityType
51 hasName hasValue ”Process Request for Quote”
52 hasTask hasValue saveDataInDatabase� �

Listing 1: Example process- and activity-types

The explicit modelling of runtime execution using processOccurrences and activityOccurrences
is similar to the modelling style of PSL. The semantics of ordering constraints is given on the
occurrence trees of activities and processes: a particular constraint restricts the allowed (runtime)
occurrence trees. The explicit modelling of occurrences is also used for the state-transition charac-
teristics of processes and activities. The ontology includes common process states (from different
WfMS), such as active, suspended, resumed, cancelled, aborted, completed etc. (not shown in the
diagram).

To allow hierarchical composition of activityTypes and processTypes the ontology includes a
blockActivity concept. Hierarchical activities or composite processes can be represented using the
containsActivity and containsProcess attribute.

To incorporate the prevalent activity-based models [10] the ontology includes connectors, which
model explicit control-flow ordering. A common set of higher level control-flow constructs is pro-
vided for convenience, using the workflow patterns [2] as a reference model. Conditional expressions
and various split and join restrictions are provided for basic and advanced branching and synchro-
nisation patterns. ParallelMultiInstantiation and sequentialMultiInstantiation model structural
patterns and patterns involving multiple instances. The isUnOrdered property on blockActivities
models a non-deterministic ordering of tasks.

For constrained-based modelling one can omit the connectors and instead define input- and
outputConditions on the activityTypes. Listing 2 shows how to model explicit control-flow ordering
on a snippet from our motivating example, stating that the check-product-availability has a control-
flow and data-flow dependency on the request-for-quote activity.

8 DERI TR 2006-02-03

� �
58 instance cpa memberOf activityType
59 hasName hasValue ”Check Product Availability”
61 hasSplitRestriction hasValue productAvailability
68

69 instance rfqToCpa memberOf {controlConnector, dataConnector}
70 hasStartActivity hasValue rfq
71 hasEndActivity hasValue cpa� �

Listing 2: Example control- and data-flow connectors

5.1.2 Choreography related (behavioural)

To extract choreographies from internal business processes, the m3po has to distinguish private,
abstract and publicProcessTypes. PrivateProcessTypes are fully executable internal process models,
abstractProcessTypes are used to model interface models, and publicProcessTypes are used to model
collaborative processes. In the abstract and public processes, activities can be defined to be visible
only to specific partners by the isVisibleTo attribute. Listing 3 shows two different visibility
assignments from our example above; the messageEvent is visible for the buyer role (but also –
implicitly– visible to the seller, as process-owner), whereas the manualTask is only visible to the
seller. The visibility properties have to be added by a business analyst in the ontological model.� �
26 instance sourceNode memberOf {startEvent, messageEvent}
27 hasName hasValue ”Source Node”
28 isVisibleFor hasValue buyer
62

63 instance checkStockApplication memberOf manualTask
64 hasName hasValue ”Check Availability in Material Management”
65 hasPerformer hasValue warehouseman
67 isVisibleFor hasValue seller� �

Listing 3: Manual task with visibility assignments

5.2 Informational Aspect

The informational aspect (see figure 5) is defined by the data and data-flow perspectives [13]. The
data being provided in process models is categorised into control and production data, whereas
control data is only relevant to the model itself (e.g. functional properties of the process model)
and production data exists independently from the process model.

5.2.1 Workflow related (informational)

The m3po supports all common data patterns [19]: direct data passing (data-flow), indirect data-
passing (shared data-store), and data-flow independent from control-flow, all including data trans-
formations.

DataBagSchemas define data schemas for production as well as control data. They either
point to an external reference (e.g. an XML Schema file) or to dataElementDefinitions with an
elementName and an elementType. The allowed types correspond to the XML Schema datatypes7.
The actual data values (i.e. elementType) passed in a process are defined on activityOccurrences.

7http://www.w3.org/TR/xmlschema-2/.

http://www.w3.org/TR/xmlschema-2/

DERI TR 2006-02-03 9

informational

DataBagOccurence

DataBagSchema

-hasName:string
-isOrdered:boolean
-hasExtReference:int

DataElement

-elementName:string
-elementValue:datavalue

*

Parameter

-hasMode:mode

VariableMapping

-fromParameter:Parameter
-toParameter:Parameter
-mappingRule:expr

from+

ActivityType

DataElementDefinition

-elementName:string
-elementType:datatype
-hasMultiplicity:int

*

MessageEvent

Message

-hasName:string
-hasMessageHeader:MessageHeader
-hasMessagePayload:MessagePayload

to+

startActivity+

Connector

endActivity+

DataConnector

-hasParameter:Parameter

Created with Poseidon for UML Community Edition. Not for Commercial Use.
Figure 5: Informational aspect

� �
37 instance processInput memberOf parameter
38 hasDataBagScheme hasValue partDescription
39 hasMode hasValue inParameter
40

41 instance partDescription memberOf dataBagScheme
42 hasName hasValue ”Part Description”
43 hasDataElement hasValue rfqPartID� �

Listing 4: Example of explicit data passing

To model dataflow between activities, processes, and programs, processTypes, activityTypes,
programs and dataBags can specify parameters. These parameters can have the modes in-only,
out-only, or in/out. Listing 4 shows a part of the data definition in our motivating example, namely
dataBagSchemas definitions (containing automotive parts) that belong to data passing parameters.

To allow data transformations, a mapping relation (variableMapping) can be defined if the
elementType of an incoming parameter differs to the elementType of the outgoing parameter.

DataConnectors can pass data between activityTypes using parameters. This allows the mod-
elling of a data passing mechanism that is independent from the control coordination.

To accommodate models which do not pass data explicitly, but share all data via a global data
store [19] processTypes include a parameter attribute. If data is passed to the process with a inPa-
rameter, it is accessible to all activityTypes defined in this process. This method of data sharing is
based on a shared a priori knowledge of the elementName and elementType of dataElementDefini-
tions. The parameter attribute also facilitates passing external data to and from the processTypes
at instantiation and completion.

5.2.2 Choreography related (informational)

The fundamental modelling primitive in choreographies is the sequence and conditions in which
messages are exchanged. The explicit representation of messages is usually not part of workflow
models. Even if this fundamental approach to model data flow is possible in the internal model,
it is only used to transfer data between tasks. In the case of a collaboration these messages are

10 DERI TR 2006-02-03

sent between collaborationRoles and contain a messageHeader (which stores control information
about the message) and a messagePayload (the actual content of a message). Listing 4 shows
the modelling of messages, containing requests for quotes; the message structure would be defined
through dataBagSchemas or external dataRepresentations. Since message transfer is specific to
external processes it would have been manually added to the model by a workflow engineer.� �
26 instance sourceNode memberOf {startEvent, messageEvent}
27 hasName hasValue ”Source Node”
28 isVisibleFor hasValue buyer
29 hasMessage hasValue rfqMessage
30

31 instance rfqMessage memberOf message
32 hasName hasValue ”Request for Quote Message”
33 hasParameter hasValue processInput
34 hasMessageHeader hasValue rfqMessageHeader
35 hasMessagePayload hasValue rfqMessagePayload� �

Listing 5: Example use of messages

In the message-oriented approach the caller does not necessarily have to know the exact proce-
dure that will be invoked, but instead creates a message of a specific format known to both roles,
the fromRole and toRole. A grounding to a specific partner interface is not necessary.

The ontology further allows to define the visibility of dataBags to a specific collaborationRole.
This gives the modeler the opportunity to restrict the access to data elements.

5.3 Organisational Aspect

The organisational aspect (see figure 6) defines who is responsible for carrying out a specific task.
We include an adapted form of the organisational reference model introduced in [17].organisational

Competence

CollaborationRole

-hasName:int
-hasExtReference:iri

Organisation

-hasName:string

OrganisationalUnit

-hasName:string

Participant

-hasName:string

Person

Qualification

ManualTask

PartnerLink

-hasName:string

Position

-hasName:string

partOf+

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure 6: Organisational aspect

5.3.1 Workflow related (organisational)

A participant represents an organisational or human process resource. It is a named entity as-
sociated with a manualTask. The belongsTo attribute allows to hierarchically structure organisa-
tionalUnits and persons. Competence describes the possible actions a participant is permitted to
perform. A qualification is a direct property of a person, and remains associated with the person,
even if its position in the organisation changes. A position requires a competence, whereas many

DERI TR 2006-02-03 11

persons can meet these requirements with their qualifications. Holders of positions are granted the
necessary authorities to perform the tasks associated with these positions. Groups of positions can
be used to model for example temporary units (project teams) within an organisation.

5.3.2 Choreography related (organisational)

The modelling of choreographies requires an additional role model different to the internal role
model; it has to be included manually. It should allow to specify the role of the organisation as a
whole in an external business process. A collaborationRole defines the observable behaviour that
a party exhibits when collaborating with other parties in the external process. A “buyer” role for
example is associated with the purchase of goods or services and the “seller” role is associated with
providing those goods or services.

To give one partner the possibility to impose restrictions on the functionality that must be
provided by other partners in the external process, the ontology includes partnerLinks. Each
partnerLink is characterised by an associated collaborationRole that has to be played by the col-
laboration partner. Listing 6 shows the role model from our example: the seller role is played by
the automotive parts vendor, the buyer role is played by the car manufacturer.� �
16 instance buyerSellerRelation memberOf partnerLink
17 hasName hasValue ”Buyer/Seller Relation”
18 hasRole hasValue {seller, buyer}
19

20 instance seller memberOf collaborationRole
21 hasName hasValue ”Automotive Parts Vendor”
22

23 instance buyer memberOf collaborationRole
24 hasName hasValue ”Car Manufacturer”� �

Listing 6: PartnerLinks and collaborationRoles

5.4 Operational Aspect

The operational aspect of the m3po is shown in figure 7. Current WfMSs have multiple ways to
interact with their environment. Most systems distinguish between manual tasks performed by
users, and automatic tasks, performed by automated computer programs.

The automatic tasks can be invoked in multiple ways, such as Web services or system appli-
cations. To represent this, operations are implemented by a manualTask or a programTask. The
operational aspect can be seen as an interface to the external application, where the ontology
models the execution properties.operational

ManualTask

-hasPerformer:Participant
-hasImplementation:_iri

Program

-hasName:string
-hasExtReference:iri

uses+

ProgramTask

Parameter

-hasMode:mode

Task

-hasName:stringActivityType

Created with Poseidon for UML Community Edition. Not for Commercial Use.Figure 7: Operational aspect

12 DERI TR 2006-02-03

The parameter attribute of programs controls the passing of the data required by the application.
The presence of the according values is handled by the information perspective as described in
section 5.2. Programs can be asynchronous or synchronous. The ontology allows to model different
types of programs (e.g. executableApplications or webServiceApplications) as wrappers for any type
of automatic task.

To indicate whether user interaction is required in the execution of a program, it can be asso-
ciated with a manualTask to assign a person to the execution of the program. The manualTask is
further used for manual operations that are performed by a human participant. It has an associated
performer (i.e. participant) and a possible external reference to define data input forms.

5.5 Orthogonal Aspects

Several WfMSs allow rudimentary scheduling based on time. The m3po therefore includes timeTrig-
gerEvents which are triggered if some time constraints are met. A specific timepoint or a recur-
ringCycle (e.g. every Tuesday at 9am) can be set that will trigger the event. A timeTriggerEvent
is itself an activityType and if it is used within the main flow it acts as a delay mechanism. If the
event is used for exception handling it will change the normal flow into an exception flow. In order
to allow the modeling of due dates and maximal duration time, activityTypes include according
properties.

Integrity and failure recovery [13] is another orthogonal aspect taken into account in the on-
tology. CompensationEvents and errorHandlingEvent concepts are wrappers to compensate failed
activities. Both events receive dataBags about the current state of the world and return data
regarding the results of the compensation. CompensationEvents are also used to model transac-
tional behaviour of processes. Transactions can be either compensatable, retrieable, or pivot [16].
The ontology allows to define transactionalBoundaries that associate activityTypes that should
behave transactionally. If the transaction is compensatable all of its associated activities have to
define compensatable event triggers. Every activityType within a pivot transaction has to define a
errorHandlingEvent which triggers the termination of the process.

5.6 Summary

Applying the analysis from section 3.2, we see in table 2 that m3po is unique in the combination
of workflow primitives and support for choreography-specific concepts. The ontology can act as
a connecting ontology to integrate different workflow models (horizontal integration) and allows
extraction of external process models (vertical integration).

ve
rt

.

ho
ri

z.

be
ha

v.

in
fo

r.

or
g.

op
er

.

ch
or

.

m3po + ± + + + + +

Table 2: workflow and choreography features of m3po

DERI TR 2006-02-03 13

6 Validation

To validate our hypothesis we first need to show that indeed all metamodels can be represented,
and then that arbitrary choreography interfaces can be extracted. We report on an initial result,
namely the mapping from one WfMS (IBM MQ Workflow) into our ontology, and the mapping to
one choreography language (Abstract BPEL), as shown in figure 8.

IBM workflow
m3po Abstract BPEL

annotations

Figure 8: extracting a choreography interface

The mapping from the workflow model has been demonstrated already in the example snippets
throughout section 5. The extracted choreography interface is shown in listing 7. The interface
starts with the definition of the partners, generated from the manually added annotations. The
actual process starts at line 8 and contains the three workflow activities as invoke and receive
operations. The check-product-availability activity, the split conditions, the organisational role
model, and the internal data transfer are omitted from the choreography interface since they were
marked as private information.� �

1 <wsdl>
2 <plnk:partnerLinkType name=”buyerSellerRelation”>
3 <plnk:role name=”seller”>
4 <plnk:portType name=”rfqpw”/>
5 </plnk:role>
6 <plnk:role name=”buyer”>
7 <plnk:portType name=”rfqpwCallback”/>
8 </plnk:role>
9 </plnk:partnerLinkType>

10 </wsdl>
11
12 <process name=”rfqpw”
13 targetNamespace=”http://xmlns.oracle.com/BPELProcess1”
14 xmlns=”http://schemas.xmlsoap.org/ws/2003/03/business−process/”
15 xmlns:bpws=”http://schemas.xmlsoap.org/ws/2003/03/business−process/”
16 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
17 xmlns:lns=”http://manufacturing.org/wsdl/purchase”>
18 <partnerLink name=”buyerSellerRelation”
19 partnerLinkType=”lns:buyerSellerRelation”
20 myRole=”seller”
21 partnerRole=”buyer”/>
22 </partnerLinks>
23 <variables>
24 <variable name=”rfqMessage” messageType=”lns:rfqMessage”/>
25 <variable name=”quoteMessage” messageType=”lns:quoteMessage”/>
26 <variable name=”referralMessage” messageType=”lns:referralMessage”/>
27 <variable name=”referralMessage” type=”xsd:boolean”/>
28 </variables>
29 <sequence name=”main”>
30 <receive name=”processRFQ” partnerLink=”buyerSellerRelation” portType=”lns:rfqpw” operation=”initiate” variable=”rfqMessage”/>
31 <assign>
32 <copy>
33 <from opaque=”yes”/>
34 <to variable=”condition” property=”xsd:boolean”/>
35 </copy>
36 </assign>
37 <switch name=”quoteDecision”>
38 <case condition=”if bpws:getVariableData(’condition’) = true”>
39 <invoke name=”prepareReferral” partnerLink=”buyerSellerRelation” portType=”lns:rfqpwCallback” operation=”onResult” inputVariable=”quoteMessage”/>
40 </case>
41 <otherwise>
42 <invoke name=”processQuote” partnerLink=”buyerSellerRelation” portType=”lns:rfqpwCallback” operation=”onResult” inputVariable=”referralMessage”/>
43 </otherwise>
44 </switch>
45 </sequence>
46 </process>� �

Listing 7: Abstract BPEL description

14 DERI TR 2006-02-03

7 Conclusion

We have presented the multi meta-model process ontology (m3po), an intermediate unifying work-
flow ontology based on the most prominent existing workflow reference models. We have shown that
m3po is unique in the combination of workflow primitives and support for choreography-specific
concepts, and can act as connecting ontology to integrate workflow models and allow choreography
interface extraction.

We have validated its completeness by first translating an example workflow from IBM Web-
sphere MQ Workflow to m3po and then extracting a Abstract BPEL choreography interface from
it. We showed that one can straightforwardly generate a complete and correct Abstract BPEL
interface from the annotated m3po ontology.

To further verify the hypothesis that any process model can be mapped to the m3po, more
work is still required on the construction of mappings from the workflow management systems and
choreography languages to our ontology.

References

[1] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet another workflow language. Information
Systems, 30(4):245–275, 2005.

[2] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow patterns.
Distributed and Parallel Databases, 14(1):5–51, 2003.

[3] P. C. Attie, M. P. Singh, A. Sheth, and M. Rusinkiewicz. Specifying and enforcing intertask dependen-
cies. In Proc. of the 19th Conf. on Very Large Databases, pp. 134–145. 1993.

[4] J. de Bruijn et al. The web service modelling language WSML. WSML Final Draft D16.1, 2005. V0.21.

[5] C. Bussler. B2B Integration. Springer, 2003.

[6] I. Chebbi, S. Dustdar, and S. Tata. The view-based approach to dynamic inter-organizational workflow
cooperation. Data Knowl. Eng., 56(2):139–173, 2006.

[7] D. K. W. Chiu, et al. Workflow view driven cross-organizational interoperability in a web service
environment. Inf. Tech. and Management, 5(3-4):221–250, 2004.

[8] S. Damodaran and N. Kartha. Automating B2B integration with XML – the RosettaNet approach.
XML Journal, 2004.

[9] R. Dijkman and M. Dumas. Service-oriented design: A multi-viewpoint approach. Int. Journal of
Cooperative Information Systems, 13(4):337–368, Dec. 2004.

[10] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow management: From process
modeling to workflow automation infrastructure. Distributed and Parallel Databases, 3(2):119–153,
1995.

[11] P. Grefen, K. Aberer, H. Ludwig, and Y. Hoffner. Crossflow: Cross-organizational workflow management
for service outsourcing in dynamic virtual enterprises. IEEE Data Engineering Bulletin, 24(1):52–57,
2001.

[12] M. Gruninger. Ontology of the process specification language. In S. Staab and R. Studer, (eds.)
Handbook on Ontologies, pp. 575–592. Springer, 2004.

DERI TR 2006-02-03 15

[13] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture and Implemen-
tation. Int. Thomson Computer Press, 1996.

[14] N. Kavantzas et al. Web services choreography description language, Nov. 2005.

[15] A. Martens. Consistency between executable and abstract processes. In Proc. of Intl. IEEE Conf. on
e-Technology, e-Commerce, and e-Services. Mar. 2005.

[16] S. Mehrotra, R. Rastogi, A. Silberschatz, and H. Korth. A transaction model for multidatabase systems.
In Proc. of the 12th Int. Conf. on Distributed Computing Systems, pp. 56–63. 1992.

[17] M. zur Muehlen. Organizational management in workflow applications issues and perspectives. Infor-
mation Technology and Management, 5(3-4):271–291, 2004.

[18] M. P. Papazoglou and D. Georgakopoulos. Service-oriented computing. Communications of the ACM,
46(10):25–28, 2003.

[19] N. Russell, A. H. ter Hofstede, D. Edmond, and W. M. P. van der Aalst. Workflow data patterns.
FIT-TR-2004-01, Queensland University of Technology, 2004.

[20] M. Sayal, F. Casati, U. Dayal, and S. Ming-Chien. Integrating workflow management systems with
business-to-business interaction standards. In Proc. of the 18th Int. Conf. on Data Engineering, pp.
287–296. 2002.

[21] K. A. Schulz and M. E. Orlowska. Facilitating cross-organisational workflows with a workflow view
approach. Data Knowl. Eng., 51(1):109–147, 2004.

[22] A. Sheth, et al. The METEOR workflow management system and its use in prototyping significant
healthcare applications. In Proc. of the Toward an Electronic Patient Record Conf. (TEPR’97), pp.
267–278. Nashville, TN, USA, 1997.

[23] A. P. Sheth, W. M. P. van der Aalst, and I. B. Arpinar. Processes driving the networked economy.
IEEE Concurrency, 7(3):18–31, 1999.

[24] S. Thatte et al. Business process execution language for web services, v1.1, May 2003.

[25] XML process definition language v2.0. Workflow Management Coalition, 2005.

	Introduction
	Motivating Example
	Current situation
	Preferred situation

	Approach
	Hypothesis
	Analysis

	Related Work
	Ontology
	Functional and Behavioural Aspect
	Workflow related (behavioural)
	Choreography related (behavioural)

	Informational Aspect
	Workflow related (informational)
	Choreography related (informational)

	Organisational Aspect
	Workflow related (organisational)
	Choreography related (organisational)

	Operational Aspect
	Orthogonal Aspects
	Summary

	Validation
	Conclusion

